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5 et Introduction

» Latencies associated with invocation of
remote operations and inter-process
communication affects performance

* One way to deal with this : cluster
related operations in a single operation :
bulk operation

 Issue is that some component between
the user and the middleware needs to
do this optimization : usually the user
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= act Grid APIs

» Naturally concerned with performance
problems

« They usually offer means to hide the
latency such as asynchronous
operations (tasks) or bulk operations

* SAGA : OGF application-oriented
standard

— 80:20 rule. 80% functionality with 20%
effort (complexity)
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5 act SAGA

» Covering : file access, replica
management, job submission and
control, and data streaming.

» API needs to be simple : optimizations
are not exposed to the user

* However some use cases require these
optimizations : need to show that they
can be integrated while keeping the
simplicity of the API
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5 act SAGA Architecture

Application
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File / Dir Stream
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API
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5 act Requirements for bulks

* Need two types of information

— Information about task dependencies: what
tasks are independent and can be run as a
bulk

— Information about the tasks themselves:
which tasks are similar enough so that it
makes sense for them to run together
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m Asynchronous operations
B <t in SAGA

— Tasks
» Handles to asynchronous function calls
« run(), wait(...), cancel(), get_state()

— Task Container

» Concept to handle a group of async. function
calls.

* add_task(...), remove_task(...), run(), wait(...),

— Task Bulks

* A set of arbitrary tasks, sharing common
properties.
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= act Example code

vector<string> files = . ;
saga: :task container tc;

//create fTile copy tasks
while (files.size()) {
saga::file T (files.pop());
tc.add(f.copy<saga::task>
(“/data’™));
¥

//run all tasks
tc.run(Q);

//wait for all tasks
tc.wait();
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5 act Requirements, refined

» Explicit asynchronous API

— Synchronous operations are not
considered

 Information about task
(non)dependencies
— Implicitly provided by the container class
 Information about task similarities

— No requirements on the API but the
implementation should allow inspection of
the remote operation
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5 act Architecture of our system

Task Annotator

add meta information
to the task

' Task Analyzing and
Bundling
\H analyze tasks and .
create bulks | 125k Execution

| : execute bulk tasks
together

| Task Monitor

| ; monitor tasks and
bulks
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8 et Adding meta-information

» Not just a function pointer : Need to
have access to information about the
executed method (function name,
parameter values, class name and
instances)

 All this stored in the task and used as a
basis for clustering heuristics
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5 et Task Analyzing & bundling

» task container::run() used as entry
point:
— using meta-information for analysis
— bundling “similar” tasks together

according to different clustering

strategies:
operation class bulk
same same yes
same different 10
different same yes
different different no
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S act Task execution

* Using a standard selection tool an adaptor is
selected. The adaptor tries to execute all the
tasks using its specialized bulk handling

* returns a subset (may be empty) of tasks he
couldn’t execute

* new bulk-adaptors are selected until all bulks
are executed

* if necessary, fall back to one-by-one
execution.
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E: act Prototype implementation

 SAGA engine was extended to allow
harvesting of semantic information for
operations

* Important measure : overhead of
bundling and analyzing the tasks

* Important to note : this is for optimizing
the invocation of the operations, not the
operations themselves

» Example adaptor : interfaces to a
GridFTP-based file copy (GSI) service
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5 act Benchmarks
— Introduced sorting overhead | e

— SAGA initiated bulk handling VS. dlrect
middleware invocation. - _

— SAGA initiated bulk handling vs. SAGA
initiated async. function calls.
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5 act Benchmarks
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5 et Benchmarks

Direct grid middleware uselige: Bulk operalic')ns (copying files I(‘1 MB))
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5 act Conclusion

» Bulk optimizations could be done within

SAGA
» Three requirements for generic bulk

optimizations in APl implementations:

— Asynchronous API

— Explicit information about task dependencies

— APl implementation must be able to inspect the

tasks in order to find similar tasks

* Benchmarks:

— Minor overhead introduced, but not neglectable
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