Generic Support for Bulk
Operations in Grid]
Applications

Stephan Hirmer, Hartmut Kaiser,
Andre Merzky, Andrei Hutanu,
Gabrielle Allen

" act

.' Center for Computation & Technology

B <« o Outline

* Introduction
* Grid API's
* SAGA. Asynchronous operations

» Bulk operations within the SAGA C++
reference implementation

« Benchmarks. Conclusion

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 et Introduction

» Latencies associated with invocation of
remote operations and inter-process
communication affects performance

* One way to deal with this : cluster
related operations in a single operation :
bulk operation

 Issue is that some component between
the user and the middleware needs to
do this optimization : usually the user

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

= act Grid APIs

» Naturally concerned with performance
problems

« They usually offer means to hide the
latency such as asynchronous
operations (tasks) or bulk operations

* SAGA : OGF application-oriented
standard

— 80:20 rule. 80% functionality with 20%
effort (complexity)

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 act SAGA

» Covering : file access, replica
management, job submission and
control, and data streaming.

» API needs to be simple : optimizations
are not exposed to the user

* However some use cases require these
optimizations : need to show that they
can be integrated while keeping the
simplicity of the API

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 act SAGA Architecture

Application
SAGA API
Packages (proxies) {ink tims)
SAGA Engine File / Dir Stream
SAGA CPI
Adaptors (run time)
File / Dir Stream
Middleware
API
Middleware (link time)
File / Dir Stream

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 act Requirements for bulks

* Need two types of information

— Information about task dependencies: what
tasks are independent and can be run as a
bulk

— Information about the tasks themselves:
which tasks are similar enough so that it
makes sense for them to run together

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

m Asynchronous operations
B <t in SAGA

— Tasks
» Handles to asynchronous function calls
« run(), wait(...), cancel(), get_state()

— Task Container

» Concept to handle a group of async. function
calls.

* add_task(...), remove_task(...), run(), wait(...),

— Task Bulks

* A set of arbitrary tasks, sharing common
properties.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

= act Example code

vector<string> files = . ;
saga: :task container tc;

//create fTile copy tasks
while (files.size()) {
saga::file T (files.pop());
tc.add(f.copy<saga::task>
(“/data’™));
¥

//run all tasks
tc.run(Q);

//wait for all tasks
tc.wait();

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 act Requirements, refined

» Explicit asynchronous API

— Synchronous operations are not
considered

 Information about task
(non)dependencies
— Implicitly provided by the container class
 Information about task similarities

— No requirements on the API but the
implementation should allow inspection of
the remote operation

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 act Architecture of our system

Task Annotator

add meta information
to the task

' Task Analyzing and
Bundling
\H analyze tasks and .
create bulks | 125k Execution

| : execute bulk tasks
together

| Task Monitor

| ; monitor tasks and
bulks

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

8 et Adding meta-information

» Not just a function pointer : Need to
have access to information about the
executed method (function name,
parameter values, class name and
instances)

 All this stored in the task and used as a
basis for clustering heuristics

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 et Task Analyzing & bundling

» task container::run() used as entry
point:
— using meta-information for analysis
— bundling “similar” tasks together

according to different clustering

strategies:
operation class bulk
same same yes
same different 10
different same yes
different different no

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

S act Task execution

* Using a standard selection tool an adaptor is
selected. The adaptor tries to execute all the
tasks using its specialized bulk handling

* returns a subset (may be empty) of tasks he
couldn’t execute

* new bulk-adaptors are selected until all bulks
are executed

* if necessary, fall back to one-by-one
execution.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

E: act Prototype implementation

 SAGA engine was extended to allow
harvesting of semantic information for
operations

* Important measure : overhead of
bundling and analyzing the tasks

* Important to note : this is for optimizing
the invocation of the operations, not the
operations themselves

» Example adaptor : interfaces to a
GridFTP-based file copy (GSI) service

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 act Benchmarks
— Introduced sorting overhead | e

— SAGA initiated bulk handling VS. dlrect
middleware invocation. - _

— SAGA initiated bulk handling vs. SAGA
initiated async. function calls.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 act Benchmarks

time (msec)

9000

8000

7000

6000

5000

4000

3000

2000

1000

CENTER FOR COMPUTATION & TECHNOLOC

pure bulk overhead due to SAGA bulk handling

Quadratic Regression ---

1000

2000 3000 4000
number of bulk operations

5000

{ AT LOUISIANA STATE UNIVERSITY

5 et Benchmarks

Direct grid middleware uselige: Bulk operalic')ns (copying files I(‘1 MB))

time (sec)

80

60

40

20

CENTER FOR COMPUTATION & TECHNOLOGY

SAGA initiated bulk operations (copying files (1MB))

o

A

E--

200 300 400
number of files copied

AT LOUISIANA STATE UNIVERSITY

500

]
B
m et Benchmarks
m
100 T — T — T
% overhead for SAGA initiated bulk operations (copying files (1MB))
Linear regression for bulk overhead ---——----

2 50t -
iy

[1+] -+
o F— - V- il PO i

E 0 = e +:/,I-

)

©

]

<

]

=

© 50t -
=

_1 00 L 1 1 L
0 100 200 300 400 500
number of files copied

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSTTY

| [}
B
m et Benchmarks
[140 — - . —————
SAGA initiated async non bulk operations (copying files (1MB})
SAGA initiated bulk operations (copying files (1MB)) ---=
120 + B
100 s ~
g 80 ‘, o
L 7
] /
E 60} A 4
40 g -
20 F » A 4
/'//
)3; . 5 S s PV VRTVIIE VI TS o= -
0 e s == X e 3 : ; .
0 5 10 15 20 25 30
number of copied files

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSTTY

5 act Conclusion

» Bulk optimizations could be done within

SAGA
» Three requirements for generic bulk

optimizations in APl implementations:

— Asynchronous API

— Explicit information about task dependencies

— APl implementation must be able to inspect the

tasks in order to find similar tasks

* Benchmarks:

— Minor overhead introduced, but not neglectable

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

11

