
1

Generic Support for Bulk 
Operations in Grid 

Applications

Stephan Hirmer, Hartmut Kaiser, 
Andre Merzky, Andrei Hutanu,

Gabrielle Allen

Outline
• Introduction

• Grid API’s

• SAGA. Asynchronous operations

• Bulk operations within the SAGA C++ 
reference implementation

• Benchmarks. Conclusion



2

Introduction
• Latencies associated with invocation of 

remote operations and inter-process 
communication affects performance

• One way to deal with this : cluster 
related operations in a single operation : 
bulk operation

• Issue is that some component between 
the user and the middleware needs to 
do this optimization : usually the user

Grid APIs
• Naturally concerned with performance 

problems
• They usually offer means to hide the 

latency such as asynchronous 
operations (tasks) or bulk operations

• SAGA : OGF application-oriented 
standard
– 80:20 rule. 80% functionality with 20% 

effort (complexity) 



3

SAGA
• Covering : file access, replica 

management, job submission and 
control, and data streaming.

• API needs to be simple : optimizations 
are not exposed to the user

• However some use cases require these 
optimizations : need to show that they 
can be integrated while keeping the 
simplicity of the API

SAGA Architecture



4

Requirements for bulks
• Need two types of information

– Information about task dependencies: what 
tasks are independent and can be run as a 
bulk

– Information about the tasks themselves: 
which tasks are similar enough so that it 
makes sense for them to run together

Asynchronous operations 
in SAGA

– Tasks
• Handles to asynchronous function calls
• run(), wait(…), cancel(), get_state()

– Task Container
• Concept to handle a group of async. function 

calls.
• add_task(…), remove_task(…), run(), wait(…), 

…
– Task Bulks

• A set of arbitrary tasks, sharing common 
properties.



5

Example code
vector<string> files = …;
saga::task_container tc;

//create file copy tasks
while (files.size()) {
saga::file f (files.pop());
tc.add(f.copy<saga::task>

(“/data/”));
}

//run all tasks
tc.run();
//wait for all tasks
tc.wait();

Requirements, refined
• Explicit asynchronous API

– Synchronous operations are not 
considered

• Information about task 
(non)dependencies
– Implicitly provided by the container class

• Information about task similarities
– No requirements on the API but the 

implementation should allow inspection of 
the remote operation 



6

Architecture of our system

Adding meta-information
• Not just a function pointer : Need to 

have access to information about the 
executed method (function name, 
parameter values, class name and 
instances)

• All this stored in the task and used as a 
basis for clustering heuristics



7

Task Analyzing & bundling
• task_container::run() used as entry 

point:
– using meta-information for analysis
– bundling “similar” tasks together

• according to different clustering 
strategies:

Task execution

• Using a standard selection tool an adaptor is 
selected. The adaptor tries to execute all the 
tasks using its specialized bulk handling

• returns a subset (may be empty) of tasks he 
couldn’t execute

• new bulk-adaptors are selected until all bulks 
are executed

• if necessary, fall back to one-by-one 
execution.



8

Prototype implementation
• SAGA engine was extended to allow 

harvesting of semantic information for 
operations

• Important measure : overhead of 
bundling and analyzing the tasks

• Important to note : this is for optimizing 
the invocation of the operations, not the 
operations themselves

• Example adaptor : interfaces to a 
GridFTP-based file copy (GSI) service

– Introduced sorting overhead

– SAGA initiated bulk handling vs. SAGA 
initiated async. function calls.

– SAGA initiated bulk handling vs. direct 
middleware invocation.

Benchmarks



9

– Introduced sorting overhead

– SAGA initiated bulk handling vs. SAGA 
initiated async. function calls.

– SAGA initiated bulk handling vs. direct 
middleware invocation.

Benchmarks

– Introduced sorting overhead

– SAGA initiated bulk handling vs. SAGA 
initiated async. function calls.

– SAGA initiated bulk handling vs. direct 
middleware invocation.

Benchmarks



10

– Introduced sorting overhead

– SAGA initiated bulk handling vs. SAGA 
initiated async. function calls.

– SAGA initiated bulk handling vs. direct 
middleware invocation.

Benchmarks

– Introduced sorting overhead

– SAGA initiated bulk handling vs. SAGA 
initiated async. function calls.

– SAGA initiated bulk handling vs. direct 
middleware invocation.

Benchmarks



11

Conclusion
• Bulk optimizations could be done within 

SAGA
• Three requirements for generic bulk 

optimizations in API implementations:
– Asynchronous API
– Explicit information about task dependencies
– API implementation must be able to inspect the 

tasks in order to find similar tasks
• Benchmarks:

– Minor overhead introduced, but not neglectable


